Latent Variables in Science: Three Vignettes

Karen Bandeen-Roche Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health Professor of Medicine and Nursing, The Johns Hopkins University

Search for the Hurley-Dorrier Chair of Biostatistics Johns Hopkins Bloomberg School of Public Health

September 17, 2008

Purpose

• Vision: Communicate what I contribute to scientific inquiry

• Mission

- Report on work in a particular area of focus
- **Brief** overview of other work
- Metaphor for philosophy on statistical science

Philosophy on Statistical Science

• A spectrum — Discipline

— **Collaboration** with other science fields

- Impact potential: span across the spectrum
- Span = an especial strength of Johns Hopkins
 Department, School, University

- One slide: Research scope
- Latent variable modeling
 - What, why, how
 - Mode for doing science: Do data bear out theoretic predictions?
 - Vignette 1: Theory operationalization
 - Vignette 2: If data don't bear out theoretic predictions: How not?
 - --- Vignette 3: Translation from latent to observed
- Areas needing discovery

• Aging, visual health, brain health

- Cohort studies
- Programs: Older Americans Independence Center Alzheimer's Disease Research Center Epi/Biostat of Aging Training Program
- Statistical work: longitudinal / multivariate data analysis
- Multivariate failure time analysis
 - Association modeling
 - Competing risks
- Latent variable modeling

• Underlying: not directly measured. Existing in hidden form but capable of being measured indirectly by observables

— Ex/ Pollution source contributions to an airshed

— Ex/ Syndromal type

— Ex/ Integrity of physiological regulation of systemic inflammation

- <u>Some favorite books</u>: Bartholomew (1988), Bollen (1989), McCutcheon (1987), Skrondal & Rabe-Hesketh (2004)
- <u>Model</u>: A framework linking latent variables to observables

Latent Variables: What? Integrands in a hierarchical model

- Observed variables (i=1,...,n): Y_i =M-variate; x_i =P-variate
- Focus: response (Y) distribution = $G_{Y|x}(y|x)$; x-dependence
- Model:

- Y_i generated from <u>latent</u> (underlying) U_i : $F_{Y|U,x}(y|U=u,x;\pi)$ (Measurement)

- Focus on distribution, regression re U_i: $F_{U|x}(u|x;\beta)$ (Structural)

> Overall, hierarchical model: $F_{Y|x}(y|x) = \int F_{Y|U,x}(y|U=u,x)dF_{U|x}(u|x)$

Application: Post-traumatic Stress Disorder Ascertainment

• PTSD

— Follows a qualifying traumatic event

> This study: <u>personal assault</u>, <u>other personal injury/trauma</u>, <u>trauma to loved one</u>, <u>sudden death of loved one</u> = "x", along with sex

— Criterion endorsement of symptoms related to event ⇒ diagnosis > Binary report on 17 symptoms = "Y"

• Study (Chilcoat & Breslau, Arch Gen Psych, 1998)

— Telephone interview in metropolitan Detroit

— n=1827 with a qualifying event

— Analytic issues

> Nosology

> Does diagnosis differ by trauma type or gender?

> Are female assault victims particularly at risk?

Latent Variable Models: What / How Latent Class Regression (LCR) Model

• Model:

$$f_{Y|x}(y|x) = \sum_{j=1}^{J} P_{j}(x,\beta) \prod_{m=1}^{M} \pi_{mj}^{y_{m}} (1-\pi_{mj})^{1-y_{m}}$$

• Measurement assumptions : [Y_i|U_i]

— conditional independence

- nondifferential measurement

> reporting heterogeneity unrelated to measured, unmeasured characteristics

- Fitting: ML w EM (Goodman, 1974) or Bayesian
- *Posterior* latent outcome information: $Pr\{U_i=j|Y_i,x_i;\theta=(\pi,\beta)\}$

- Why?
 - to operationalize / test **theory**
 - to learn about **measurement problems**
 - they summarize multiple measures parsimoniously
 - to describe population heterogeneity
- Why not?

— their **modeling assumptions** may determine scientific conclusions

- their **interpretation** may be ambiguous
 - > nature of latent variables?
 - > what if very different models fit comparably?
 - > seeing is believing
- Import: They are widely used

Theory Operationalization and Testing

Latent Variable Modeling Theory operationalization and testing

• Meaning

- measurement model definition and testing for fit
- construct definition and validation
- stating, testing implications of scientific hypotheses for latent-observed relationships
- Necessarily collaborative!
- Some collaborations
 - dry eye syndrome (with Munoz, Tielsch, West, Schein, IOVS, 1997)

— geriatric frailty (*with Xue, Ferrucci, Walston, Guralnik, Chaves, Zeger, Fried, J Gerontol, 2006*)

— inflammation (with Walston, Huang, Semba, Ferrucci, submitted)

Do data bear out theoretic predictions?

Latent Variable Modeling Do data bear out theoretic predictions?

• Commonly used methods for adjudicating fit

- Global fit statistics (many references) > thresholds sensitive to study design; black box
- Relative fit statistics (*Akaike*, 1974; Schwarz, 1978; Lo et al., 2001) > they're relative
- Comparisons of observed and predicted frequencies, associations
 Cross-validation (*Cudeck & Browne 1983; Collins & Wugalter 1992*)
 Pearson / correlation residuals (*Hagenaars, 1988; Bollen, 1989*)
 Posterior predictive distributions (*Gelman et al, 1996*)
 Bayesian graphical displays (*Garrett & Zeger, 2000*)
 whether fit fails, not how fit fails
- Common wisdom: LV model assumptions are hard to check
 ... or are they?

Do data bear out theoretic predictions?

Part 1: Checking empirical reasonableness of the theory

- Rationale
 - If model correct and latent status known, measurement model "easy" to "explicate"
 - If persons can be partitioned into groups such that measurement model holds, model must correctly describe data distribution
- Research question: Suppose we estimate latent status. — Might the same idea work?
 - Seems circular?
 - Scientific intuition: Best shot = to randomize

Do data bear out theoretic predictions?

Part 1: Checking empirical reasonableness of the theory

1. FIT MODEL

2. ESTIMATE posterior probabilities Θ_i of membership from fit ("hats")

3. **RANDOMLY** ALLOCATE INDIVIDUALS INTO "PREDICTED," I.E. "*PSEUDO-*" CLASSES C_i ACCORDING TO $\Theta_{i1}, \Theta_{i2}, ..., \Theta_{iJ}$

4. ASSESS ASSUMPTIONS WITHIN PREDICTED CLASSES > Y_{i1},...,Y_{im} not highly associated > Y_i, x_i not highly associated

Bandeen-Roche, Miglioretti, Zeger & Rathouz, 1997; Huang & Bandeen-Roche, 2004; Wang, Brown & Bandeen-Roche, 2005

Checking the empirical reasonableness of theory

• Does the scheme work?

— Hardest part: how to formulate what it means for scheme to work

• Notation

— R_J : "Reasonable" class of LCR models; { π,β } = $\varphi \in \Phi$

• Formal statement of diagnostic premise: define

$$Z_{i\phi} = \prod_{m=1}^{M} \pi_{mj}^{y_m} (1 - \pi_{mj})^{1 - y_m} \text{ with prob. } P(x,\beta), \ j = 1, ..., J$$

— Then (<u>Theorem</u>)

$$Pr\{Y_i = y | C_i, x_i\} \xrightarrow{D} Z_{i\phi} \text{ for some } \phi$$

if and only if $f_{Yi}(y) = f_Y(y) \in R_J$ for each i

Do data bear out theoretic predictions?

Part 2: If not, what can we say about what the model is estimating?

• Under "regularity" assumptions:

> The distribution of Y can be written as a hierarchical model, except

[Y|U*,x], [U*|x] arbitrary (& specifiable in terms of π^*,β^*)

> In the long run: No bias in substituting C_i for U_i^* .

 i.e. *underlying variable distribution has an estimable interpretation even if assumptions are violated* and

regression of C_i on x_i and model-based counterparts eventually equivalent

Model characterization if theory is mistaken More formal statement

• Under Huber (1967)-like conditions:

 $-(\hat{\beta}, \hat{\pi})$ converge in probability to limits (β^*, π^*) .

-Y_i asymptotically equivalent in distribution to Y^{*}, generated as:

i) Generate U_i^* — distribution determined by (β^*, π^*), $G_{Y|x}(y|x)$;

ii) Generate Y^{*}—distribution determined by (β^*, π^*), $G_{Y|x}(y|x), U_i^*$

- $\{ \Pr[Y_i \le y | C_i, x_i], i=1,2,... \} \text{ converges in distribution to} \\ \{ \Pr[Y_i^* \le y | U_i^*, x_i], i=1,2,... \}, \text{ for each supported y.}$
- C_i converges in distribution to U_i^* given x_i .

Translation from latent to observed measures

Translation from latent to observed measures

- Goal: Create "scales" for broad analytic use
- Why?
 - Concreteness
 - Seeing is believing
 - Convenience
- What is lacking with existing methods for scale creation?

— Most yield analyses that differ considerably from LV counterparts

• Target of the current work: Latent class applications

Regression with Latent Variable Scales [what analysis?] A Staged Approach

• <u>Step 1</u>: Fit latent variable measurement model to $Y \Rightarrow \hat{\pi}$

— For now: Non-differential measurement

- <u>Step 2</u>: Obtain predictions O_i given $\hat{\pi}$, Y_i
- <u>Step 3</u>: Obtain $\hat{\boldsymbol{\beta}}$ via regression of O_i on x_i
- <u>Step 4 (rare)</u>: Fix inferences to account for uncertainty in $\hat{\pi}$

Latent Variable Scale Creation (obtaining O_i) What do we know?

- <u>Predominant work</u>: Latent factor models; linear regression of U on X
 - $Y = \pi U + \epsilon$; U, $\epsilon \sim Normal$; ϵ has mean 0 and variance Σ
 - Three scaling methods

> Ad hoc

> Posterior mean: O_i as $E[U_i|O_i, \hat{\pi}]$

Solution > **"Bartlett" method**: O_i as WLS model fit for "fixed" U_i in

$$Y_i = \hat{\pi} U_i + \epsilon_i, \ \epsilon_i \sim N(0, \hat{\Sigma});$$

— In Step 3, Bartlett scores yield consistent $\hat{\beta}$; others don't

Latent Variable Scale Creation (obtaining O_i) What do we know?

- Latent class models
 - Two methods
 - > Posterior class assignment
 - Modal or as "pseudo-class": single or multiple

> Posterior probability estimates:

 $h_i = f_{U|Y}(u|Y; \hat{\pi}); O_i = h_i$, or $logit(h_i)$, or weighted indicators

- In Step 3, all are inconsistent for $\hat{\beta}$
- A correction: Croon, *Lat Var & Lat Struct Mod*, 2002 Bolck et al., *Political Analysis*, 2004

Latent Variable Scale Creation (obtaining O_i) A new proposal

• Motivation: Bartlett method

— Latent class: $E[Y|U] = \pi S(U)$, where

> π : conditional probabilities ("covariates"; design matrix)

> S(U): Jx1 with jth element = $1{U=j}$ ("coefficients")

— Proposed **Step 2**: Linear regression of Y_i on $\hat{\pi}$, but with Bernoulli family; $O_i = \hat{S}_i$

— A shortcut: $O_i = \hat{S}_i$ via ordinary least squares; COP score

• Proposed **Step 3**: Generalized logit regression of O on x, Normal family

COP Scoring **Does it work in theory?**

In Step 3, COP scores yield consistent $\hat{\beta}$ • <u>Punch line</u>: provided data distribution identifiable LCR with non-differential measurement

• Basic ideas

Basic ideas — If π were known: OLS yields unbiased estimator of $\begin{pmatrix} Pr\{U_i=1\}\\ \vdots\\ Pr\{U_i=J\} \end{pmatrix}$

$$> \begin{pmatrix} Pr\{U_i = 1\} \\ \vdots \\ Pr\{U_i = J\} \end{pmatrix} = \begin{pmatrix} P_1(x_i, \beta) \\ \vdots \\ P_j(x_i, \beta) \end{pmatrix}, \text{ all } i, \Rightarrow \hat{\beta}_{COP} \stackrel{p}{\rightarrow} \beta$$

 $- \hat{\pi} \xrightarrow{p} \pi \text{ (marginalization, ML)}$