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Purpose

Vision: Communicate what | contribute to scientific inquiry

Mission
— Report on work in aparticular area of focus
— Brief overview of other work

— Metaphor for philosophy on statistical science



Philosophy on Statistical Science

A spectrum
— Discipline

— Collabor ation with other science fields

| mpact potential: span across the spectrum

Span = an especial strength of Johns Hopkins
— Department, School, University



Outline

One dlide: Research scope

L atent variable modeling
— What, why, how
— Mode for doing science: Do data bear out theoretic predictions?
— Vignette 1. Theory operationalization
— Vignette 2: If datadon’t bear out theoretic predictions. How not?
— Vignette 3: Trandation from latent to observed

! Areas needing discovery



Resear ch Scope

Aging, visual health, brain health
— Cohort studies
— Programs.  Older Americans | ndependence Center
Alzheimer’s Disease Research Center
Epi/Biostat of Aging Training Program
— Statistical work: longitudinal / multivariate data analysis
Multivariate failuretime analysis
— Association modeling

— Competing risks

L atent variable modeling



L atent Variables: What?

! Underlying: not directly measured. Existing in hidden form but
capable of being measured indirectly by observables

— Ex/ Pollution source contributions to an airshed
— Ex/ Syndromal type

— EX/ Integrity of physiological regulation of systemic inflammation

Some favorite books: Bartholomew (1988), Bollen (1989),
McCutcheon (1987), Skrondal & Rabe-Hesketh (2004)

Model: A framework linking latent variables to observables



L atent Variables: What?

Integrandsin a hierarchical model

! Observed variables (i=1,...,n): Y.=M-variate; x=P-variate

Focus: response(Y) distribution = G, ,(y|x); X-dependence

Model:

— Y, generated from |atent (underlying) U;:
Fuux(YlU=ux;m)  (Measurement)

— Focus on distribution, regressionre U.:
Fux(ulx;B) (Structural)

> Qverdl, hierarchical modd:
FY|x(y|X) = fFY|U,x(y|U:u’X)dFU|X(u|X)



Application: Post-traumatic Stress Disorder Ascertainment

" PTSD
— Follows a qualifying traumatic event
> This study.____personal assault, other personal injury/trauma,
trauma to loved one, sudden death of loved one
=“x", along with sex

— Criterion endorsement of symptoms related to event = diagnosis
> Binary report on 17 symptoms = “Y”

! Study (Chilcoat & Breslau, Arch Gen Psych, 1998)
— Telephone interview in metropolitan Detroit
— n=1827 with aqualifying event
— Analytic issues
> Nosology
> Does diagnosis differ by trauma type or gender?
> Are female assault victims particularly at risk?



L atent Variable Models: What / How
L atent Class Regression (LCR) Model

Moddl: J u
fuYX) =2 P(xB) IT 7,07(1-7,) "
Jj= m=
Structural model: [U|x] = Pr{U,=j|x} = P,(x,B)
— RPR=Pr{U, =|[x}/Pr{U, = Jx},; J=1,...,

M easurement assumptions: [Y.|U/]
— conditional independence
— nondifferential measurement
> reporting heterogeneity unrelated to measured, unmeasured
characteristics

Fitting: ML w EM (Goodman, 1974) or Bayesan

Posterior latent outcome information: Pr{U.=j|Y.x.;0=(7,)}



L atent Variable M odels. Philosophy

Why?
— to operationalize / test theory
— to learn about measur ement problems
— they summar ize multiple measures par ssmoniously
— to describe population heter ogeneity

Why not?
— their modeling assumptions may determine scientific condusions

— their inter pretation may be ambiguous
> nature of latent variables?
> what if very different models fit comparably?
> seeing is believing

Import: They are widely used



Vignette 1

Theory Operationalization and Testing



L atent Variable M odeling
Theory operationalization and testing

M eaning
— measurement model definition and testing for fit
— construct definition and validation
— stating, testing implications of scientific hypotheses for
|atent-observed relationships

Necessarily collaborative!

Some collaborations
— dry eye syndrome (with Munoz, Tielsch, West, Schein, |OVS, 1997)

— geriatric frailty (with Xue, Ferrucci, Walston, Guralnik, Chaves,
Zeger, Fried, J Gerontol, 2006)

— inflammation (with Walston, Huang, Semba, Ferrucci, submitted)



Vignette 2

Do data bear out theoretic predictions?



Latent Variable M odeling
Do data bear out theoretic predictions?

Commonly used methods for adjudicating fit
— Global fit statistics (many references)
> thresholds sengtive to study design; black box

— Relative fit statistics (Akaike, 1974; Schwarz, 1978; Lo et al., 2001)
> they'rereldive

— Comparisons of observed and predicted frequencies, associations
> Cross-validation (Cudeck & Browne 1983; Collins & Wugalter 1992)
> Pearson / correlation residual s (Hagenaars, 1988; Bollen, 1989)
> Posterior predictive distributions (Gelman et al, 1996)
> Bayesian graphical displays (Garrett & Zeger, 2000)
> whether fit fails, not how fit fails

! Common wisdom: LV model assumptions are hard to check
— ... or arethey?



Do data bear out theoretic predictions?
Part 1. Checking empirical reasonableness of the theory

Rationale
— If model correct and latent status known, measurement model " easy"
to “explicate”

— |If persons can be partitioned into groups such that measurement
model holds, model must correctly describe data distribution
Research question: Suppose we estimate latent status.
— Might the sameidea work?

— Seems circular?

— Scientific intuition; Best shot = to randomize



Do data bear out theoretic predictions?
Part 1. Checking empirical reasonableness of the theory

1. FIT MODEL
2. ESTIMATE posterior probabilities ®, of membership from fit (“hats”)

3. RANDOMLY ALLOCATE INDIVIDUALSINTO “PREDICTED,” I.E.
“PSEUDO-" CLASSES C, ACCORDINGTO®,, 0., ..., 0,

4. ASSESS ASSUMPTIONS WITHIN PREDICTED CLASSES
>Y.,...,Y;, hot highly associaed
> Y., X not highly associaed

Bandeen-Roche, Miglioretti, Zeger & Rathouz, 1997;
Huang & Bandeen-Roche, 2004; Wang, Brown & Bandeen-Roche, 2005



Checking the empirical reasonableness of theory

Does the scheme work?

— Hardest part: how to formulate what it means for scheme to work

Notation

— R, “Reasonable” class of LCR models; {Tt,’R} = € ®

Formal statement of diagnostic premise: define

Z

m=1

— Then (Theorem)

Pr{Y=y|Cpx}

b " ﬁ nfn’;(l—nmj)l_y’” with prob. P(x,), j=1,...J

D
=~ Z, for some ¢

If and only if f,.(y) =f,(y) € R,for each |



Do data bear out theoretic predictions?
Part 2: If not, what can we say about what the model is estimating?

! Under “regularity” assumptions:
> The distribution of Y can be written as a hierarchical
model, except

[Y|U* x], [U*|X] arbitrary (& specifiable in terms of t*,[3*)
> |nthelong run: No biasin substituting C, for U*.

I.e. underlying variable distribution has an estimable
Interpretation even if assumptions are violated
and
regression of C. on x. and model-based
counterparts eventually equivalent



Model characterization if theory is mistaken
Mor e formal statement

! Under Huber (1967)-like conditions:
—(B,#) convergein probability to limits (3, 70").
—Y. asymptoticdly equivalent in digribution to Y*, generated as:
i) Generate U;” — distribution determined by (B",7"), G, ,(YIX);
ii) Generate Y'—distribution determined by (3", 1), G, (yIX), U,

— {Pr[Y.<y|C x], 1=1,2,...} convergesin distribution to
{Pr[Y. <ylU x],i=1,2,..}, for each supported y.

— C convergesin distribution to U.” given x..



Vignette 3

Translation from latent to observed measur es



Translation from latent to observed measur es

Goal: Create “scales’ for broad analytic use

Why?

— Concreteness

— Seeing is believing

— Convenience

What is lacking with existing methods for scale creation?

— Most yield analyses that differ considerably from LV counterparts

Target of the current work: Latent class applications



Regression with Latent Variable Scales [what analysis?]
A Staged Approach

! Step 1:  Fit latent variable measurement model toY = #
— For now: Non-differential measurement

! Step 2:  Obtain predictions O, given #, Y,

I Step 3:  Obtain B viaregression of O, on x,

! Step 4 (rare): Fix inferences to account for uncertainty in ft



L atent Variable Scale Creation (obtaining O))
What dowe know?

! Predominant work: Latent factor models; linear regresson of U on X

— Y=7nU +¢€; U, € ~Normal; € has mean 0 and variance 2
— Three scaling methods
> Ad hoc
> Posterior mean: O, asE[U,|O,ft ]
> “Bartlett” method: O, asWLS model fit for “fixed” U, in
Y, = U +€, €~N(0,2);

— In Step 3, Bartlett scoresyield consistent B ; others don’t



L atent Variable Scale Creation (obtaining O))
What dowe know?

1 Latent class models
— Two methods

> Posterior class assignment
« Modal or as“pseudo-class’: single or multiple

> Posterior probability estimates:
h, = fu,(UlY;#); O=h, orlogit(h), or weighted indicators
— In Step 3, all areinconsistent for B

— A correction: Croon, Lat Var & Lat Sruct Mod, 2002
Bolck et al., Political Analysis, 2004



L atent Variable Scale Creation (obtaining O))
A new proposal

I Motivation: Bartlett method
— Latent class: E[Y|U] = TtS(U), where

> 1. conditional probabilities (“covariates’; design matrix)
> S(U): Ix1withjth element = 1{U=j} (“coefficients’)

— Proposed Step 2:  Linear regression of Y. on # , but with
Bernoulli family; O = S,

— A shortcut: O = Si viaordinary least squares, COP score

! Proposed Step 3:  Generalized logit regression of O on X,
Normal family



Does it work in theory?

COP Scoring

Punch line: In Step 3, COP scoresyield consistent f

provided data distribution identifiable LCR
with non-differential measurement

Basic ideas

— If 1 were known: OL S yields unbiased estimator of

(Pr{U=1})

\PF{UZ-:J})

p

(P,(x,B)

\PJ(xl.,ﬁ))

,all

— ft - 7w (marginalization, ML)

p

L, = Beop

B

(Pr{U=1})

\PF{UZ-:J})



