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Purpose

! Vision:  Communicate what I contribute to scientific inquiry 

! Mission  

— Report on work in a particular area of focus

— Brief overview of other work

— Metaphor for philosophy on statistical science



Philosophy on Statistical Science

!   A spectrum
— Discipline

— Collaboration with other science fields

! Impact potential:  span across the spectrum

!   Span = an especial strength of Johns Hopkins 
— Department, School, University



Outline

! One slide: Research scope 

! Latent variable modeling

— What, why, how

— Mode for doing science:  Do data bear out theoretic predictions?  

— Vignette 1:  Theory operationalization

— Vignette 2:  If data don’t bear out theoretic predictions:  How not?  

 — Vignette 3:  Translation from latent to observed   

! Areas needing discovery



Research Scope

! Aging, visual health, brain health
— Cohort studies
— Programs: Older Americans Independence Center

Alzheimer’s Disease Research Center
Epi/Biostat of Aging Training Program

—  Statistical work:  longitudinal / multivariate data analysis

! Multivariate failure time analysis

— Association modeling 

— Competing risks

! Latent variable modeling



Latent Variables: What?

! Underlying: not directly measured.  Existing in hidden form but

capable of being measured indirectly by observables

— Ex/ Pollution source contributions to an airshed

— Ex/ Syndromal type

— Ex/ Integrity of physiological regulation of systemic inflammation

!  Some favorite books:  Bartholomew (1988), Bollen (1989), 
McCutcheon (1987), Skrondal & Rabe-Hesketh (2004)

 
! Model:  A framework linking latent variables to observables



Latent Variables: What?
Integrands in a hierarchical model

! Observed variables (i=1,...,n):  Yi=M-variate;  xi=P-variate 

! Focus:   response (Y) distribution = GY|x(y|x);  x-dependence

! Model: 

— Yi generated from latent (underlying) Ui: 
FY|U,x(y|U=u,x;B) (Measurement)

— Focus on distribution, regression re Ui:
FU|x(u|x;$) (Structural)

> Overall, hierarchical model:
FY|x(y|x) = IFY|U,x(y|U=u,x)dFU|x(u|x)



Application:  Post-traumatic Stress Disorder Ascertainment

! PTSD
— Follows a qualifying traumatic event

> This study: personal assault, other personal injury/trauma, 
trauma to loved one, sudden death of loved one
= “x”, along with sex

— Criterion endorsement of symptoms related to event Y diagnosis
> Binary report on 17 symptoms = “Y”

! Study (Chilcoat & Breslau, Arch Gen Psych, 1998)
—  Telephone interview in metropolitan Detroit
—  n=1827 with a qualifying event  
—  Analytic issues 

> Nosology
> Does diagnosis differ by trauma type or gender?
> Are female assault victims particularly at risk?



Latent Variable Models: What / How
Latent Class Regression (LCR) Model

! Model:
fY|x(y|x) = Pj(x,$) Bmj

ym(1-Bmj)
1-ym

! Structural model: [Ui|xi] = Pr{Ui=j|xi} = Pj(xi,$)
— RPRj=Pr{Ui = j|xi}/Pr{Ui = J|xi}; j=1,...,J

! Measurement assumptions : [Yi|Ui]
— conditional independence
— nondifferential measurement
  > reporting heterogeneity unrelated to measured, unmeasured
     characteristics

! Fitting:  ML w EM (Goodman, 1974) or Bayesian 

! Posterior latent outcome information:  Pr{Ui=j|Yi,xi;2=(B,$)}



Latent Variable Models: Philosophy

! Why?
— to operationalize / test theory   
— to learn about measurement problems
— they summarize multiple measures parsimoniously
— to describe population heterogeneity

! Why not?
— their modeling assumptions may determine scientific conclusions

— their interpretation may be ambiguous     
> nature of latent variables?
> what if very different models fit comparably?
> seeing is believing

! Import: They are widely used 



Vignette 1

Theory Operationalization and Testing



Latent Variable Modeling
Theory operationalization and testing

! Meaning
— measurement model definition and testing for fit
— construct definition and validation
— stating, testing implications of scientific hypotheses for 

latent-observed relationships 

! Necessarily collaborative!

! Some collaborations
— dry eye syndrome (with Munoz, Tielsch, West, Schein, IOVS, 1997)

— geriatric frailty (with Xue, Ferrucci, Walston, Guralnik, Chaves, 
Zeger, Fried, J Gerontol, 2006)

— inflammation (with Walston, Huang, Semba, Ferrucci, submitted)  



Vignette 2

Do data bear out theoretic predictions?



Latent Variable Modeling
Do data bear out theoretic predictions?

! Commonly used methods for adjudicating fit
— Global fit statistics (many references) 

> thresholds sensitive to study design; black box

— Relative fit statistics (Akaike, 1974; Schwarz, 1978; Lo et al., 2001)
> they’re relative

— Comparisons of observed and predicted frequencies, associations
> Cross-validation (Cudeck & Browne 1983; Collins & Wugalter 1992)

> Pearson / correlation residuals (Hagenaars, 1988; Bollen, 1989) 
> Posterior predictive distributions (Gelman et al, 1996) 
> Bayesian graphical displays (Garrett & Zeger, 2000)
> whether fit fails, not how fit fails

 
! Common wisdom: LV model assumptions are hard to check

— ... or are they?



Do data bear out theoretic predictions?
Part 1: Checking empirical reasonableness of the theory

! Rationale  
— If model correct and latent status known, measurement model "easy"

to “explicate”

— If persons can be partitioned into groups such that measurement
model holds, model must correctly describe data distribution 

! Research question:  Suppose we estimate latent status.
— Might the same idea work?

— Seems circular?

— Scientific intuition:  Best shot = to randomize



Do data bear out theoretic predictions?
Part 1: Checking empirical reasonableness of the theory

1. FIT MODEL

2. ESTIMATE posterior probabilities 1i of membership from fit (“hats”)

3. RANDOMLY ALLOCATE INDIVIDUALS INTO “PREDICTED,” I.E.
“PSEUDO-” CLASSES Ci ACCORDING TO 1i1, 1i2, ..., 1iJ

4. ASSESS ASSUMPTIONS WITHIN PREDICTED CLASSES
> Yi1,...,Yim not highly associated
> Yi, xi not highly associated

Bandeen-Roche, Miglioretti, Zeger & Rathouz, 1997; 
Huang & Bandeen-Roche, 2004;  Wang, Brown & Bandeen-Roche, 2005



Checking the empirical reasonableness of theory
! Does the scheme work?

— Hardest part: how to formulate what it means for scheme to work

!  Notation
— RJ: “Reasonable” class of LCR models; {B,ß} = N , M

!  Formal statement of diagnostic premise: define

— Then (Theorem)

if and only if fYi(y) = fY(y) , RJ for each  i



Do data bear out theoretic predictions?
Part 2: If not, what can we say about what the model is estimating?

! Under “regularity” assumptions:
> The distribution of Y can be written as a hierarchical      
model, except

     [Y|U*,x], [U*|x] arbitrary (& specifiable in terms of B*,$*)

> In the long run:  No bias in substituting Ci for Ui*.

   i.e. underlying variable distribution has an estimable
interpretation even if assumptions are violated

   and
regression of Ci on xi and model-based
counterparts eventually equivalent 



Model characterization if theory is mistaken
More formal statement

! Under Huber (1967)-like conditions:

—( ) converge in probability to limits ($*,B*). 

—Yi asymptotically equivalent in distribution to Y*, generated as: 

i) Generate — distribution determined by ($*,B*), GY|x(y|x);

        ii) Generate Y*—distribution determined by ($*,B*), GY|x(y|x),  

—  {Pr[Yi#y|Ci,xi], i=1,2,...} converges in distribution to 
{Pr[Yi

*#y|Ui
*,xi], i=1,2,...}, for each supported y.

— Ci converges in distribution to Ui
* given xi.



Vignette 3

Translation from latent to observed measures



Translation from latent to observed measures

! Goal: Create “scales” for broad analytic use

! Why?

— Concreteness

— Seeing is believing

— Convenience

! What is lacking with existing methods for scale creation?

— Most yield analyses that differ considerably from LV counterparts

! Target of the current work: Latent class applications



Regression with Latent Variable Scales [what analysis?]
A Staged Approach

! Step 1: Fit latent variable measurement model to Y Y 

— For now: Non-differential measurement 

! Step 2: Obtain predictions Oi given , Yi

! Step 3: Obtain via regression of Oi on xi 

! Step 4 (rare): Fix inferences to account for uncertainty in  



Latent Variable Scale Creation (obtaining Oi)
What do we know?

! Predominant work: Latent factor models; linear regression of U on X 

— Y= BU + ,;  U, , ~ Normal;  , has mean 0 and variance E

—  Three scaling methods

> Ad hoc

> Posterior mean:  Oi as E[Ui|Oi, ]

> “Bartlett” method: Oi as WLS model fit for “fixed” Ui in

Yi = Ui + ,i,  ,i ~ N(0, );

— In Step 3, Bartlett scores yield consistent ; others don’t



Latent Variable Scale Creation (obtaining Oi)
What do we know?

! Latent class models
—  Two methods

> Posterior class assignment
• Modal or as “pseudo-class”: single or multiple
 

> Posterior probability estimates: 

hi = fU|Y(u|Y; ); Oi=hi, or logit(hi), or weighted indicators

— In Step 3, all are inconsistent for 

— A correction:  Croon, Lat Var & Lat Struct Mod, 2002 
Bolck et al., Political Analysis, 2004



Latent Variable Scale Creation (obtaining Oi)
A new proposal

! Motivation:  Bartlett method
— Latent class:  E[Y|U] = BS(U), where

> B:  conditional probabilities (“covariates”; design matrix)

> S(U):  Jx1 with jth element = 1{U=j}   (“coefficients”)

— Proposed Step 2: Linear regression of Yi on , but with
Bernoulli family; Oi = 

— A shortcut:  Oi =  via ordinary least squares; COP score

! Proposed Step 3: Generalized logit regression of O on x,
Normal family



COP Scoring
Does it work in theory?

! Punch line: In Step 3, COP scores yield consistent  
provided data distribution identifiable LCR 
with non-differential measurement

! Basic ideas

— If B were known: OLS yields unbiased estimator of 

> = , all i, Y 

 —  (marginalization, ML)


